
These slides are for the SIGGRAPH 2012 course 
Realistic Rendering with Many-Light Methods.  
This part is titled Scalability with many lights, part 
one and will be presented by Bruce Walter from 
Cornell University.  These slides are subject to 
change until the actual time of presentation, so 
please see the course website to get the latest 
version.



This section will discuss the lightcuts approach to 
scalable many light rendering.  It primarily covers 
the ideas from these two papers: Lightcuts and 
Multidimensional Lightcuts.  First I will discuss the 
lightcuts method for efficiently computing the 
illumination at single point from many lights, then I 
will describe the multidimensional extension which 
computes the illumination over the entire region 
corresponding to a pixel.



Once we have a scalable solution for many point 
lights, we can use this to compute many types of 
complex illumination.  The four examples are area 
lights, high dynamic range environment maps, 
sun & sky light, and indirect illumination.  
Moreover unified handling of different illumination 
types and enables new types of tradeoffs.  For 
example, bright illumination from one source 
allows coarser approximations of other sources.



Using more point lights creates a more accurate 
simulation, but once we have thousands to 
millions of point lights, evaluating them all would 
be expensive and wasteful, as the contribution 
from individual lights is often too small to be 
noticeable.



The core of lightcuts is a new scalable algorithm 
for efficiently approximating the light from many 
point lights.  By many I mean thousands to 
millions.  Here we show the time to compute this 
tableau scene with environment map illumination 
using varying numbers of lights.  Evaluating each 
light individually gives a cost that increases 
linearly with the number of lights.  Lightcuts’ cost 
is strongly sub-linear and thus its advantage 
grows dramatically as the number of lights 
increases.



Given a set of points we want to compute their 
contribution at some point of interest.



The lights do not contribute equally as some may 
be occluded.



And ultimately we are interested only in light 
reflected towards a camera, so the material 
properties also effect their contribution.



There are a few key concepts we need to 
understand the lightcuts approach.  First is a light 
cluster where we approximate a group of lights by 
replacing them by a single brighter light called the 
representative light.



Second is the light tree which is a binary tree of 
lights and clusters.  The leaves of this tree are the 
individual lights while the interior nodes represent 
clusters which get progressively larger as we go 
up the tree.



The third is a cut which is a set of nodes that 
partitions the lights into clusters.  Here illustrated 
by the orange line.



Here is a simple scene with four lights and its 
corresponding light tree.



And here we show three example cuts through the 
light tree.  Highlighted above each cut are the 
regions where that cut produces an accurate 
approximation of the exact illumination.



If we look at this green point on the left of the 
images, the orange cut produces a good 
approximation while the blue and purple cuts 
would cause too much error.



Conversely for this point in the center of the 
images, the blue cut is a good approximation while 
the orange and purple cuts are not usable.  This 
illustrates an important point.  We will want to use 
different cuts in different parts of the image.



For this point on the right side of the images, all 
three cuts usable.  In this case the purple cut is 
the best choice because it will be the cheapest to 
compute as it contains the fewest nodes.



To generate an image, first we perform a particle 
tracing to generate the VPL (virtual point lights).  
Then we build the light tree using a simple greedy 
approach.  The more difficult problem is choosing 
the cuts.  There is a cost vs accuracy tradeoff of 
cuts higher in the tree are cheaper while cuts 
lower the in tree are more accurate.  We also 
need to avoid transition artifacts.  Since we will 
use different cuts in different parts to the image, 
there will be transitions between places where we 
use a cluster and places where we refine it, and 
we don’t want these to produce visible artifacts.  
We will actually use this to drive the cut selection.



We can use Weber’s law which say the the 
minimal visible change is roughly a fixed 
percentage of the total signal.  For our results we 
used a threshold of 2%.  We can ensure that 
cluster transitions are not visible by guaranteeing 
that the clusters error always be less than this 
threshold.  But we will need to be able to put an 
upper bound on the error introduced by a cluster.



We start with a coarse cut such as the root node 
of the tree.



Then we select the node with the largest error 
bound.  (the root node in this case).



And refine this node if its error is greater than 2% 
of the estimated total.  Refining means removing 
a node from the cut and replacing it with its 
children.



Then we again select the cut node with the largest 
error bound



And refine if its error bound is above threshold



And repeat again



Until each node on the cut obeys our 2% 
threshold.



Here we show a result rendered with lightcuts and 
a reference image which looks identical.



A false color image shows how the cutsize varies 
over the image.  Note that it is much smaller than 
the 13000 lights.  We also show an exaggerated 
error image which shows places where transitions 
occur and the problems they would cause if we 
allowed them to large enough to be visible.



To recap, lightcuts is a unified framework for 
handling complex illumination.  Its core is a new 
scalable solution for handling many lights and a 
locally adaptively illumination approximation 
called the cut.  It is based on analytic cluster error 
bounds that guarantee that we will always sample 
the most important lights and a perceptual 
visibility metric.  



Next I will describe the multidimensional 
extension to lightcuts to efficiently compute the 
illumination over pixels rather than just at 
individual points.



Let me first describe the problem we’re trying to 
solve.  In order to compute high quality realistic 
images we need to be able to simulate multiple 
complex expensive phenomena.  For instance the 
image on the right includes complex illumination, 
both from a captured environment map and 
indirect illumination, plus anti-aliasing and, on the 
right side of the image, motion blur for the 
spinning roulette wheel.  Thus for each pixel we 
need to integrate the contribution over multiple 
domains.



If we also want to include participating media then 
we also need to integrate over the volume of the 
scene.  For example in this smoky kitchen scene 
which shows shafts of sunlight streaming into the 
kitchen.



And if we want to add depth of field or camera 
focus such as shown in this scene then we need 
to also integrate over the aperture of the camera.



A new method will be presented on Tuesday that 
uses the Multidimensional Lightcuts framework to 
handle a wider range of materials including glossy 
reflections, subsurface or BSSRDF, and complex 
volumetric models such as cloth.



Come to the talk on Tuesday to hear more details.



What we want is compute total pixel values for our 
images which means multiple integrals.  While 
many previous techniques have tried solving each 
integral separately but this does not result in a 
scalable solution.  One of the key insights here is 
that solving the complete pixel integral is 
fundamental to achieving a scalable solution.



This example shows another way in which the 
system is scalable.  We take a single scene and 
progressively add more and more complex 
effects.  Thus the image on the upper left is a 
direct only solution for the area lights and sun.  
The image on the upper right also include indirect 
illumination.  The image on the lower left also 
added smoke or participating media to the scene 
and finally the image on the lower right further 
adds motion blur.  Even though this image 
includes multiple complex effects its rendering 
time only increases by a factor of 2.2 compared to 
the direct only solution which is much better than 
in traditional approaches where adding each 
effect would greatly increase the image time.



So now let’s describe how the system works.  We 
discretize the full integral equation using two point 
sets.  First we convert all the light sources in the 
scene to point light approximations.



We also trace particles from the light to create 
additional light points that account for the effect of 
indirect illumination.



Then for each pixel we trace rays from the 
camera through the pixel to generate gather 
points.  Note that these point can be generated 
over time, over the volume, camera aperture, etc. 
to account for the different integral domains.



The the set of all gather-light pairs forms a very 
large set of transport paths that can accurate 
approximate the full integral.



There are several key concepts we use for this 
scalable solution.  First we reduce all the integrals 
to a unified representation, namely pairs of gather 
and light points.  Then we form a hierarchy of 
clusters over the set of pairs which we call the 
product graph.  Then we use this hierarchy to 
dynamically select a appropriate partitioning of the 
pairs into clusters which we call a cut.  To achieve 
this we need an inexpensive way to approximate 
each cluster, to bound the error introduced by this 
approximation and an perceptual metric.



Since we could have up to billions of pairs per 
pixel, explicitly constructing a hierarchy over them 
would be too expensive.  Instead we are going to 
create an implicit hierarchy via the cartesian 
product of two trees, the gather tree and the light 
tree.



So first we generate all the light points and cluster 
them together into a light tree.  Then for each 
pixel we generate the gather points and cluster 
them together into a gather tree.



Then we can use these trees to define the product 
graph which forms a hierarchy over the set of all 
gather-light pairs.  Each node in the product graph 
corresponds to pairing of one node from the light 
tree and one node from the gather tree.



For example the source node of the product graph 
corresponds to the pairing of the root node of the 
light tree and the root node of the gather tree.



In the scene this corresponds to combining all the 
light points into a single cluster, combining all the 
gather points into a single cluster and then 
treating the set of all pairs as just a single 
interaction between these clusters.  In general 
that is not going to be an accurate enough 
approximation of the pixel value, so we need a 
way to refine this approximation.



For example we can split the lights into two 
clusters and then treat the set of all pairs as two 
interactions.  One between the gather points and 
the light cluster on the left and the other between 
the gather points and the light cluster on the right.  
This corresponds to moving along the blue arrows 
in the product graph.  It also corresponds to 
moving one step down in the light tree.





We could also have refine the interaction by 
moving one step down in the gather tree (ie 
splitting the gather cluster) which corresponds to 
the green arrows in the product graph.  A key 
thing to note here is that we do not ever have to 
actually create the product graph.  Instead we can 
implicitly traverse the product graph by 
simultaneously walking both the light and gather 
trees.  And thus we never actually instantiate the 
product graph.  



We could also have refine the interaction by 
moving one step down in the gather tree (ie 
splitting the gather cluster) which corresponds to 
the green arrows in the product graph.  A key 
thing to note here is that we do not ever have to 
actually create the product graph.  Instead we can 
implicitly traverse the product graph by 
simultaneously walking both the light and gather 
trees.  And thus we never actually instantiate the 
product graph.  



A cluster consists of a set of gather points and a 
set of lights and represents all possible pairings 
between the gather and light points.  To cheaply 
approximate a cluster, we select a single pair and 
evaluate it, scaled by an appriopriate factor based 
on the probability of picking that pair.



Each time we evaluate a cluster, we select one 
light as its representative.  We pick one of the light 
to be the representative light and similarly one 
representative gather point.  Then we 
approximate all the gather-light pairs using just 
the single pair of the representative gather point 
and the representative light point.  



One important change from Lightcuts is that we 
store multiple representatives per cluster node.  
This is essential when integrating over time as 
only nodes at the same instant of time can be 
connected, but is also very useful even not 
integrating over time.  It helps reduce correlation 
between pixels and reduce error regardless of 
which refinement type is chosen.



We also need to generalize the error bounding to 
include gather cluster to light clusters rather than 
just the point to cluster bounds in the original 
Lightcuts.  However we can collapse cluster-
cluster interactions back into point-cluster 
interactions using Minkowski sums where we 
shrink one cluster to a point while simultaneously 
expanding the other cluster.  We also need to 
combine the bounds from all points in a cluster 
into a common representation.  We do this by 
rasterizing them into cubemaps that cover the 
sphere of directions.  In the paper we used fixed 
resolution cubemaps but we have since switched 
to adaptive cubemaps (quad-tree on each face) 
because these better handle glossy BRDFs and 



other strongly directional distributions.



So now let us summarize our algorithm.  Once per 
image, we generate the set of light points and 
cluster them into a light tree.  Then for each pixel 
we generate gather points and cluster them into a 
gather tree.  Then we start with a coarse cut in the 
product graph and adaptively refine it until the 
each node’s error is less than our perceptual 
metric.



For example we can start with the coarsest cut 
which is simply the source node of the product 
graph.



Then at each step we choose the node with the 
largest error bound and refine it by moving one 
step down in either the gather tree or the light 
tree.  In this example we’ve chosen to move one 
step down in the light tree.



Then we repeat the process.



Select the node with the largest error bound and 
refine it, in this case we chosen to refine by 
moving one step down in the gather tree.



We keep refining until all node in the cut have 
error bounds less than our perceptual metric, 
which is 2% of the estimated pixel value and is 
based on Weber’s law.



This is an example with a spinning roulette wheel 
which has strong motion blur.  Here we are using 
256 temporal samples per pixel for an average of 
over 7 million potential pairs per pixel.  However 
the cut size is only 174 which means that we only 
actually evaluated 174 pairs which is only a tiny 
fraction of all the pairs.  



Many lights rendering unifies the handling of 
complex illumination and the multidimensional 
lightcuts approach similarly unifies the handling of 
many effects including motion blur, participating 
media, and depth of field.  In unifies the 
representation of all effects as pairs of gather and 
light points and uses an implicit hierarchy over the 
pairs called the product graph.  Together with 
error bounds and a perceptual metric this 
algorithm is both both scalable and accurate.



That concludes my talk and I’d be happy to 
answer any questions.




