
These slides are for the SIGGRAPH 2012 course
Realistic Rendering with Many-Light Methods.
This part is titled Scalability with many lights, part
one and will be presented by Bruce Walter from
Cornell University. These slides are subject to
change until the actual time of presentation, so
please see the course website to get the latest
version.

This section will discuss the lightcuts approach to
scalable many light rendering. It primarily covers
the ideas from these two papers: Lightcuts and
Multidimensional Lightcuts. First I will discuss the
lightcuts method for efficiently computing the
illumination at single point from many lights, then I
will describe the multidimensional extension which
computes the illumination over the entire region
corresponding to a pixel.

Once we have a scalable solution for many point
lights, we can use this to compute many types of
complex illumination. The four examples are area
lights, high dynamic range environment maps,
sun & sky light, and indirect illumination.
Moreover unified handling of different illumination
types and enables new types of tradeoffs. For
example, bright illumination from one source
allows coarser approximations of other sources.

Using more point lights creates a more accurate
simulation, but once we have thousands to
millions of point lights, evaluating them all would
be expensive and wasteful, as the contribution
from individual lights is often too small to be
noticeable.

The core of lightcuts is a new scalable algorithm
for efficiently approximating the light from many
point lights. By many I mean thousands to
millions. Here we show the time to compute this
tableau scene with environment map illumination
using varying numbers of lights. Evaluating each
light individually gives a cost that increases
linearly with the number of lights. Lightcuts’ cost
is strongly sub-linear and thus its advantage
grows dramatically as the number of lights
increases.

Given a set of points we want to compute their
contribution at some point of interest.

The lights do not contribute equally as some may
be occluded.

And ultimately we are interested only in light
reflected towards a camera, so the material
properties also effect their contribution.

There are a few key concepts we need to
understand the lightcuts approach. First is a light
cluster where we approximate a group of lights by
replacing them by a single brighter light called the
representative light.

Second is the light tree which is a binary tree of
lights and clusters. The leaves of this tree are the
individual lights while the interior nodes represent
clusters which get progressively larger as we go
up the tree.

The third is a cut which is a set of nodes that
partitions the lights into clusters. Here illustrated
by the orange line.

Here is a simple scene with four lights and its
corresponding light tree.

And here we show three example cuts through the
light tree. Highlighted above each cut are the
regions where that cut produces an accurate
approximation of the exact illumination.

If we look at this green point on the left of the
images, the orange cut produces a good
approximation while the blue and purple cuts
would cause too much error.

Conversely for this point in the center of the
images, the blue cut is a good approximation while
the orange and purple cuts are not usable. This
illustrates an important point. We will want to use
different cuts in different parts of the image.

For this point on the right side of the images, all
three cuts usable. In this case the purple cut is
the best choice because it will be the cheapest to
compute as it contains the fewest nodes.

To generate an image, first we perform a particle
tracing to generate the VPL (virtual point lights).
Then we build the light tree using a simple greedy
approach. The more difficult problem is choosing
the cuts. There is a cost vs accuracy tradeoff of
cuts higher in the tree are cheaper while cuts
lower the in tree are more accurate. We also
need to avoid transition artifacts. Since we will
use different cuts in different parts to the image,
there will be transitions between places where we
use a cluster and places where we refine it, and
we don’t want these to produce visible artifacts.
We will actually use this to drive the cut selection.

We can use Weber’s law which say the the
minimal visible change is roughly a fixed
percentage of the total signal. For our results we
used a threshold of 2%. We can ensure that
cluster transitions are not visible by guaranteeing
that the clusters error always be less than this
threshold. But we will need to be able to put an
upper bound on the error introduced by a cluster.

We start with a coarse cut such as the root node
of the tree.

Then we select the node with the largest error
bound. (the root node in this case).

And refine this node if its error is greater than 2%
of the estimated total. Refining means removing
a node from the cut and replacing it with its
children.

Then we again select the cut node with the largest
error bound

And refine if its error bound is above threshold

And repeat again

Until each node on the cut obeys our 2%
threshold.

Here we show a result rendered with lightcuts and
a reference image which looks identical.

A false color image shows how the cutsize varies
over the image. Note that it is much smaller than
the 13000 lights. We also show an exaggerated
error image which shows places where transitions
occur and the problems they would cause if we
allowed them to large enough to be visible.

To recap, lightcuts is a unified framework for
handling complex illumination. Its core is a new
scalable solution for handling many lights and a
locally adaptively illumination approximation
called the cut. It is based on analytic cluster error
bounds that guarantee that we will always sample
the most important lights and a perceptual
visibility metric.

Next I will describe the multidimensional
extension to lightcuts to efficiently compute the
illumination over pixels rather than just at
individual points.

Let me first describe the problem we’re trying to
solve. In order to compute high quality realistic
images we need to be able to simulate multiple
complex expensive phenomena. For instance the
image on the right includes complex illumination,
both from a captured environment map and
indirect illumination, plus anti-aliasing and, on the
right side of the image, motion blur for the
spinning roulette wheel. Thus for each pixel we
need to integrate the contribution over multiple
domains.

If we also want to include participating media then
we also need to integrate over the volume of the
scene. For example in this smoky kitchen scene
which shows shafts of sunlight streaming into the
kitchen.

And if we want to add depth of field or camera
focus such as shown in this scene then we need
to also integrate over the aperture of the camera.

A new method will be presented on Tuesday that
uses the Multidimensional Lightcuts framework to
handle a wider range of materials including glossy
reflections, subsurface or BSSRDF, and complex
volumetric models such as cloth.

Come to the talk on Tuesday to hear more details.

What we want is compute total pixel values for our
images which means multiple integrals. While
many previous techniques have tried solving each
integral separately but this does not result in a
scalable solution. One of the key insights here is
that solving the complete pixel integral is
fundamental to achieving a scalable solution.

This example shows another way in which the
system is scalable. We take a single scene and
progressively add more and more complex
effects. Thus the image on the upper left is a
direct only solution for the area lights and sun.
The image on the upper right also include indirect
illumination. The image on the lower left also
added smoke or participating media to the scene
and finally the image on the lower right further
adds motion blur. Even though this image
includes multiple complex effects its rendering
time only increases by a factor of 2.2 compared to
the direct only solution which is much better than
in traditional approaches where adding each
effect would greatly increase the image time.

So now let’s describe how the system works. We
discretize the full integral equation using two point
sets. First we convert all the light sources in the
scene to point light approximations.

We also trace particles from the light to create
additional light points that account for the effect of
indirect illumination.

Then for each pixel we trace rays from the
camera through the pixel to generate gather
points. Note that these point can be generated
over time, over the volume, camera aperture, etc.
to account for the different integral domains.

The the set of all gather-light pairs forms a very
large set of transport paths that can accurate
approximate the full integral.

There are several key concepts we use for this
scalable solution. First we reduce all the integrals
to a unified representation, namely pairs of gather
and light points. Then we form a hierarchy of
clusters over the set of pairs which we call the
product graph. Then we use this hierarchy to
dynamically select a appropriate partitioning of the
pairs into clusters which we call a cut. To achieve
this we need an inexpensive way to approximate
each cluster, to bound the error introduced by this
approximation and an perceptual metric.

Since we could have up to billions of pairs per
pixel, explicitly constructing a hierarchy over them
would be too expensive. Instead we are going to
create an implicit hierarchy via the cartesian
product of two trees, the gather tree and the light
tree.

So first we generate all the light points and cluster
them together into a light tree. Then for each
pixel we generate the gather points and cluster
them together into a gather tree.

Then we can use these trees to define the product
graph which forms a hierarchy over the set of all
gather-light pairs. Each node in the product graph
corresponds to pairing of one node from the light
tree and one node from the gather tree.

For example the source node of the product graph
corresponds to the pairing of the root node of the
light tree and the root node of the gather tree.

In the scene this corresponds to combining all the
light points into a single cluster, combining all the
gather points into a single cluster and then
treating the set of all pairs as just a single
interaction between these clusters. In general
that is not going to be an accurate enough
approximation of the pixel value, so we need a
way to refine this approximation.

For example we can split the lights into two
clusters and then treat the set of all pairs as two
interactions. One between the gather points and
the light cluster on the left and the other between
the gather points and the light cluster on the right.
This corresponds to moving along the blue arrows
in the product graph. It also corresponds to
moving one step down in the light tree.

We could also have refine the interaction by
moving one step down in the gather tree (ie
splitting the gather cluster) which corresponds to
the green arrows in the product graph. A key
thing to note here is that we do not ever have to
actually create the product graph. Instead we can
implicitly traverse the product graph by
simultaneously walking both the light and gather
trees. And thus we never actually instantiate the
product graph.

We could also have refine the interaction by
moving one step down in the gather tree (ie
splitting the gather cluster) which corresponds to
the green arrows in the product graph. A key
thing to note here is that we do not ever have to
actually create the product graph. Instead we can
implicitly traverse the product graph by
simultaneously walking both the light and gather
trees. And thus we never actually instantiate the
product graph.

A cluster consists of a set of gather points and a
set of lights and represents all possible pairings
between the gather and light points. To cheaply
approximate a cluster, we select a single pair and
evaluate it, scaled by an appriopriate factor based
on the probability of picking that pair.

Each time we evaluate a cluster, we select one
light as its representative. We pick one of the light
to be the representative light and similarly one
representative gather point. Then we
approximate all the gather-light pairs using just
the single pair of the representative gather point
and the representative light point.

One important change from Lightcuts is that we
store multiple representatives per cluster node.
This is essential when integrating over time as
only nodes at the same instant of time can be
connected, but is also very useful even not
integrating over time. It helps reduce correlation
between pixels and reduce error regardless of
which refinement type is chosen.

We also need to generalize the error bounding to
include gather cluster to light clusters rather than
just the point to cluster bounds in the original
Lightcuts. However we can collapse cluster-
cluster interactions back into point-cluster
interactions using Minkowski sums where we
shrink one cluster to a point while simultaneously
expanding the other cluster. We also need to
combine the bounds from all points in a cluster
into a common representation. We do this by
rasterizing them into cubemaps that cover the
sphere of directions. In the paper we used fixed
resolution cubemaps but we have since switched
to adaptive cubemaps (quad-tree on each face)
because these better handle glossy BRDFs and

other strongly directional distributions.

So now let us summarize our algorithm. Once per
image, we generate the set of light points and
cluster them into a light tree. Then for each pixel
we generate gather points and cluster them into a
gather tree. Then we start with a coarse cut in the
product graph and adaptively refine it until the
each node’s error is less than our perceptual
metric.

For example we can start with the coarsest cut
which is simply the source node of the product
graph.

Then at each step we choose the node with the
largest error bound and refine it by moving one
step down in either the gather tree or the light
tree. In this example we’ve chosen to move one
step down in the light tree.

Then we repeat the process.

Select the node with the largest error bound and
refine it, in this case we chosen to refine by
moving one step down in the gather tree.

We keep refining until all node in the cut have
error bounds less than our perceptual metric,
which is 2% of the estimated pixel value and is
based on Weber’s law.

This is an example with a spinning roulette wheel
which has strong motion blur. Here we are using
256 temporal samples per pixel for an average of
over 7 million potential pairs per pixel. However
the cut size is only 174 which means that we only
actually evaluated 174 pairs which is only a tiny
fraction of all the pairs.

Many lights rendering unifies the handling of
complex illumination and the multidimensional
lightcuts approach similarly unifies the handling of
many effects including motion blur, participating
media, and depth of field. In unifies the
representation of all effects as pairs of gather and
light points and uses an implicit hierarchy over the
pairs called the product graph. Together with
error bounds and a perceptual metric this
algorithm is both both scalable and accurate.

That concludes my talk and I’d be happy to
answer any questions.

